1

Name_

First 2-Hour Exam

By printing your name below, you pledge that

"On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work."

	Name	
Recitation TA's Name:		[Amy, Kate or Katie]
Recitation Day of	ind Time:	
Points:		
Page #	Max. Points	Your Score
2	10	
3	10	
4	18	
5	12	
6	12	
7	24	
8	10	
9	4	
		TOTAL (out of 100)
General Inst	ructions:	
• This is	a closed book exa	m! No notes and no molecular models may

- This is a closed book exam! No notes and no molecular models may be used
- You have 2 hours to complete the exam
- Write your name on the top of each page
- Use the back of pages for scratch paper
- Don't cheat!

Question # 1	10 pts total
Circle the correct answer (2 pts each):	
a) NaIO ₄ is a cheap, non-toxic, method for dihydroxylation of alkenes.	TRUE FALSE
b) Cuprates are useful for alkylation reactions because they are less basic than Grignard reagents.	TRUE FALSE
c) LAH is a useful reagent for the reduction of esters to aldehydes.	TRUE FALSE
d) Reduction can involve the addition of O to a molecule.	TRUE EALSE
e) The carbon atom of a carbonyl group is electrophilic.	TRUE FALSE
f) A carbene has a carbon with 4 valence electrons plus an empty p orbital	TRUE FALSE
g) Oxidation can involve the removal of H from an organic compound.	TRUE FALSE
h) NABH4 is a useful reagent for the reduction of carboxylic acids to aldehydes.	TRUE FALSE
i) Simple carbene (: CH_2) can not be prepared from CH_3Br and <i>t</i> -BuOK.	TRUE FALSE
j) A reaction that produces diastereoisomers will always produce them in equal amounts.	TRUE FALSE

Question # 2

For each of the reactions below

(i) indicate what the relationship between the products is (enantiomers; diastereoisomers; or same compound)

and (ii) indicate whether you would expect the products to be formed in equal (E) or non-equal amounts (NE). If you think the question of the ratio of products is not relevant to a particular example write NA.

Question # 3

Draw the product of the following reactions. Remember that aqueous workup is performed at the end of reactions. If a reaction generates enantiomers draw both enantiomers. In cases where diastereoisomers are formed draw both diastereoisomers.

2pt

Points this page_

36 pts total

How would you synthesize the following molecules from the shown starting materials using organic reagents containing less than 7 carbons, and any inorganic reagents you choose. *Please pay* attention to stereochemistry where it is shown! For partial credit show retrosynthesis and/or the products of each step if your synthesis requires more than one step.

BONUS (2pts for correct answer. No partial credit and you can't score >100% on the exam): How would you synthesize the starting material from two organic compounds of 4 carbons?

a)

Question # 4

d) For this question provide *3 different syntheses* [i.e. you must start from a different compound!] starting with aldehydes of 7 carbons or less: 18 pt

Question # 6

Write mechanisms for the following two reactions. Be sure to show all the intermediates and all the arrows required for each step [including aqueous workup if it is required].

b)