CHEM 3311 (Richardson) First Hour Exam - Sep. 26, 2017

Your Name:QuestionStudent ID:1Student ID:233Recitation (check one)0 1:00 Mon (Zhenhao Chen)0 8:00 Tue (Rachel Weintraub)0 11:00 Tue (Patrick Li)0 2:00 Tue (Zhenhao Chen)0 1:00 Wed (Zepeng Lei)0 3:00 Wed (Rachel Weintraub)0 9:00 Thu (Rachel Weintraub)0 12:00 Thu (Patrick Li)0 3:00 Thu (Zepeng Lei)0 2:00 Fri (Rachel Weintraub)0 3:00 Fri (Rachel Weintraub)Total

Question	Score	Out of
1		18
2		12
3		10
4		20
5		16
6		6
7		18
Total		

This is a closed-book exam. The use of notes, calculators, or cell phones will not be allowed during the exam. You may use models sets brought in a clear ziplock bag. Use the backs of the pages for scratch work. If your final answer is not clearly specified, you will lose points.

1 0					•						•	-	· · · · ·	•		-		
hydrogen 1																		helium 2
L 🛈 🗌																		L
п																		пе
1.0079 lithium	beryllium	ĺ.										1	boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	4												5	6	7	8	9	10
Li	Be												В	C	N	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
Ma	Ma												A 1	C:	D	C	ČI.	Δ
INA	ivig												AI	31	F	Э	G	AI
22.990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	mandanese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38		39	40	41	42	43	runenium 44	45	46	47	48	49	50	51	52	53	54
Ph	Sr		V	7r	Mb	Mo	To	Du	Ph	Dd	٨a	Cd	In	Sn	Sh	To	1	Yo
IND 85.469	97.62		68 000	~		INIC	10	NU	102.01	FU	Ay	Cu	114.92	311	30	107.60	126.00	VC 131 30
caesium	barium	-	lutetium	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TL	Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Er	Ra	* *	l r	Pf	Dh	Sa	Rh	He	N/I+	Hun	Llum	Hub		Illua				
10000	INA	AA	L.			Jy		113	IVIL	oun	ouu	Jun		uq				
			1.21571	12/51	1252	1 12555	12/54	12654	12630	• • • • • • • • • • • • • • • • • • •		12//		1 1289				

*Lanthanida series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthanide series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
× × A . (1.1.1.1	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

pKa Values

HI	-10	CH ₃ COOH	4.7	ArOH	10	H_2	35
HBr	-8	HN ₃	4.7	RSH	10-12	NH ₃	36
HCl	-6	H_2S	7.0	H ₂ O	15.7	$H_2C=CH_2$	45
H_3O^+	-1.7	$\mathrm{NH_4}^+$	9.3	ROH (R=alkyl)	16-18	CH ₄	60
HF	3.2	HCN	9.4	HC≡CH	26		

- 1) For the following reactions, complete these steps: (18 pts total)
 - add arrows to show the movement of electrons (2 pts per problem)
 - classify each species as either an acid, base, nucleophile, or electrophile (2 pts per problem). Please use the labels "nucleophile" and "electrophile" only for things that are NOT acting as acids/bases.
 - identify the HOMO and LUMO for each reaction (2 pts per problem). Hint for c: the HOMO is the orbital that directly attacks the other molecule.

a. HO
$$\bowtie$$
 $R \xrightarrow{O} C \xrightarrow{Br} HO \xrightarrow{O} R \xrightarrow{O} C \xrightarrow{Br} Br$ \longrightarrow $HO \xrightarrow{R} C \xrightarrow{Br} Br$

 Pipamperone, shown below, is an antipsychotic used for the treatment of schizophrenia. Which of the listed functional groups does pipamperone contain? Circle all that apply. (10 pts)

Alcohol	Aldehyde	Alkene	Amide	Amine
Aromatic ring	Ester	Ether	Alkyl/aryl halide	Ketone

- 4) Lewis structure and Molecular Orbitals (20 pts total)a. Draw a Lewis structure for acetylene, C₂H₂. (4 pts)
 - b. What is the hybridization of each carbon atom in this structure? (2 pts)
 - c. How many σ and how many π bonds are there between the two carbon atoms? (2 pts)
 - d. Generate an MO diagram for the C-C triple bond in acetylene, given that any π orbitals will be at the same energy level as each other. Ignore the atomic orbitals and electrons used for bonding to hydrogen atoms, and do not show 1s orbitals. (10 pts)

e. What is the bond order between the two carbons, according to the MO diagram? (2 pts)

- 5) Cyclopentadiene, shown below, is surprisingly acidic for an organic compound. It loses a proton very easily from its sp³-hybridized carbon. (16 pts total)
 - a. Draw the conjugate base of cyclopentadiene. (2 pts)
 - b. Show all the major resonance forms of the conjugate base (starting with the structure you drew for part a.), using arrow-pushing to move from one form to the next. (8 pts)

- c. What is the average charge on each carbon atom? (3 pts)
- d. What is the average C-C bond order? (3 pts)
- 6) For each set of compounds shown below, rank them by acidity (1=highest pKa, 3 = lowest pKa) and explain your reasoning in twenty words or less per explanation. (6 pts)

7) Draw the structure of 2-methylpentane. Sighting along the bond between carbon 2 and carbon 3 (as numbered by IUPAC), show a Newman projection for the molecule's conformations for dihedral angles in increments of 60°. Keep the front atom stationary and rotate the back atom clockwise. For each conformation, plot these energy levels and create a conformational energy diagram. You do not need to calculate the exact energy for each level – a rough estimate is acceptable, so long as the relative ordering of levels is correct. If the energy of a particular interaction is not shown in this table, assume it is zero. (18 pts)

Energy
(kcal/mol)
1
1.15
1.25
3.6
3.9
0.67
0.75

