CH	EM	3311
Dr.	Mir	nger

Please read and sign the Honor Code statement below:

I pledge that on my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this exam.

	Signature

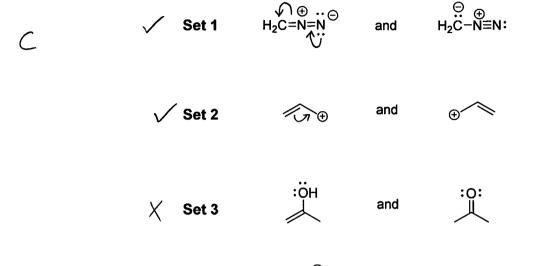
General Instructions: There are 25 questions. Be sure you have them all. Read each question carefully so that you know exactly what is being asked.

Each multiple choice question (1-25) is worth 4 points and has only one correct answer. Bubble in your answers to these questions on the Scantron provided. Only the Scantron will be graded, not anything that you write on the exam.

At the end of the exam, turn in your Scantron and this signed cover sheet. You may keep the rest of the exam to check your answers against the key later.

Good luck!

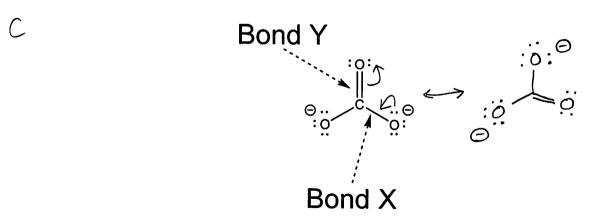
1A	2A						ЗА	4A	5A	6A	7 A	8A
histopin	-					 						- ii


hrbujin 1	_		•	•	•	•	•	•	•	••	• •		••	• •	• •	••		heum
H																		He
1 (6)7%	berstian	1																4,0026
3	4												lean S	Garbon 6	10\$1.35#1 7	OXYGen	Buorine	10
Li	Be												B	Č	N		F	
6.941	9.9122												10811	12011		0	-	Ne
torikm 11	nacmeters 12												aluminkan	# process	14.0x/7 phosphorus	LG-773 Milhir	18,9;:6 chkmae	20 180 argen
													13	14.	15	16	17	18
Na	Mg												ΑI	Si	P	S	CI	Ar
22 State January Ken	AL 365 coldion		scandon	blanksa	Yanadisan	cironiso	BLANKINGA.	In,n	CHARL	ngkel		1000	27, 42 / g.#83m	20 (ชาช บูเครามกลังเต	30.974	32,045	36.464	39 94A
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	l Ti l	V	l Cr l	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	410/8		41.006	47 967	50,142	51.986	54.938	55,845	50.933	28.973	63,548	65.39	69.773	-261	14.9/2	_ 19.00	79,944	8349
37	strontum 38		vitrium 39	/tro.nt/m 40	Aftern 41	42	Historium 43	Althorium 44	45	pathathan	Salve A	Calmagn	KREIVE	bp	residences	(oturin)	kwiinė	AVAVA1
Rb	Sr		Ÿ			_ :-				46	47	48	49	50	51	52	53	54
85.84	31 87 87		144 WG	Zr	Nb	Мо	TC	Ru	Rh	Pd	Ag	Cd	ln i	Sn	Sb	Te		Xe
CERTERIOR	Lunum		MANERA	91224 Bathken	tantourn	क्षात्र कृति कह	(144)	101.07 09128008	102 91 \$5\$209	(this 12 (tabrum	107 97 934	112.41 RESECUTY	114 A 2 Buckburp	119.71 Mari	121 M blanuth	127 iii) potomesii	129 m	131.79
55	_56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	astabne 85	sation 86
Cs	Ba	*	Lu	Hf	Ta	I W I	Re	Os	lr l	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
137,91	13/33		1/4.97	174.49	180 95	157 84	186.21	170.23	192.72	196-98	19697	200.50	204.48	297.2	244	1001	121(1	100
87	ENHUM BB	89-102	103	rutiv rive sture 104	105	SAMORGER 106	bahrken 107	hissien 108	metherban 109	110	TRESTRICTED IN	(\$2 majoren	4-7-7-100	unenque fuer		1644	1619	1666
Fr	Ra	* *		Rf	Db						111	112		114	1			
123	IVA	^ ^	Lr			Sg	Bh	Hs	Mt		Uuu	oub		Uuq	1			
	_ F/M			156.0	187	291	[244]	26/4	1/694	D211	1274	ו מיט		DA9	I			

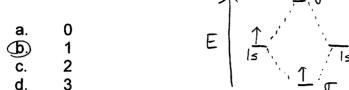
Lanthanide series	'n	.anthanide	series
-------------------	----	------------	--------

^{**}Actinide series

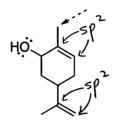
s	La La	Ce	59 Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	HO	Er	Tm	Yb
	Ac	Th	Pa	92 U	Np	Pu	Am	96 96	Bk	Cf	Es	Fm	Md	NO


1. Which of the following pairs of structures does NOT represent a pair of resonance contributors?

- a. Set 1
- b. Set 1 and Set 3
- © Set 3
- d. Set 4
- e. All of these sets represent pairs of resonance contributors


and

2. Here is the structure of the carbonate anion, CO₃²⁻. Would you expect bond Y to be shorter, longer, or the same length as bond X?



- a. Shorter
- b. Longer
- (c.) The same length

3. Consider the ion H_2^+ . How many electrons are in the bonding molecular orbital for this ion?

Questions 4, 5 and 6 relate to carveol, a naturally occurring compound called a terpenoid that is found in many essential oils. Here is the structure of carveol. (Note that one of the carbon atoms is indicated by an arrow.)

Carveol

- 4. What is the hybridization of the carbon indicated by the arrow?
- a. spb. sp^2

B

- d. The indicated carbon is not hybridized.
- 5. What is the approximate <u>electronic</u> geometry around the oxygen atom?
 - a. trigonal planar
 - b. linear
 - © tetrahedral
 - d. octahedral
 - e. bent
- 6. How many sp^2 carbon atoms are there in carveol?
- a. 2 b. 3 © 4 d. 5

7. Here is the constitution of a compound called pregabalin, an anticonvulsant which is marketed under the trade name Lyrica. The lone pairs of electrons are not shown in this structure. To complete the structure, how many lone pairs of electrons must be added? (The formal charge is zero on all atoms.)

H₂N O

Pregabalin (Lyrica)

a. 1 b. 2

E

- c. 3
- d. 4
- (e.) 5
- 8. Which of the structures is NOT an acceptable resonance contributor to the resonance hybrid represented by the others?

- a. A
- b. B
- © C d. D
- e. All are acceptable resonance contributors

9. The constitution of cholesterol is shown here:

Cholesterol can be classified as a(n):

alcohol (a.)

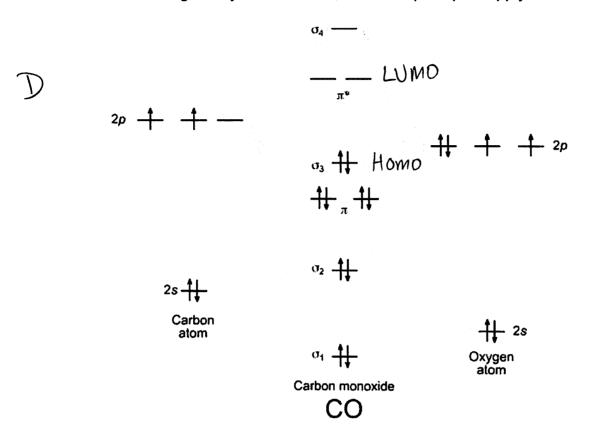
A

E

12.

- b. amide
- ester C.
- d. ketone
- e. anhydride
- According to valence bond theory, which orbitals are overlapping to form 10. the C-O σ bond in cholesterol?

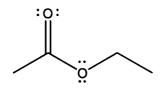
a.
$$p$$
 and p $0 sp^3$ and $0 sp^3$


- sp^2 and sp^2 p and sp^2 sp^2 and sp^3 sp^3 and sp^3
- C.
- d.
- According to valence bond theory, which orbitals are overlapping to form 11. the C-C π bond in cholesterol?

Which of these molecular orbitals would you not expect to exist in cholesterol?

a. C-H
$$\sigma$$
 There are no C-O π bonds b. C-C π^*

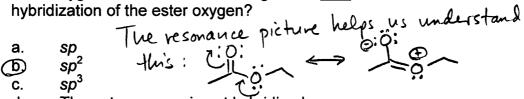
- (c) С-О т
- Nonbonding d.
- All of these orbitals exist in cholesterol


13. Here is a molecular orbital diagram for CO, carbon monoxide. The atomic and molecular orbitals are labeled. Even though it is more complicated than the diagrams you have seen, the same principles apply.

According to this diagram, what is the LUMO in CO?

- a. σ^3
- b. σ^4
- c. 2*p*
- e. None of these

14. Ethyl acetate is the compound shown here:

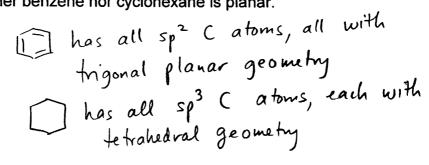

Ethyl acetate

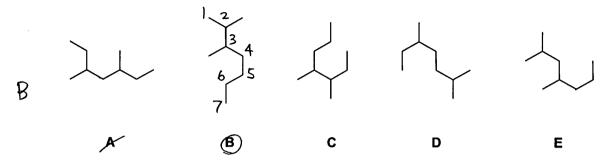
To what class of compounds does ethyl acetate belong?

- a. carboxylic acid
- b. ether
- ester \odot

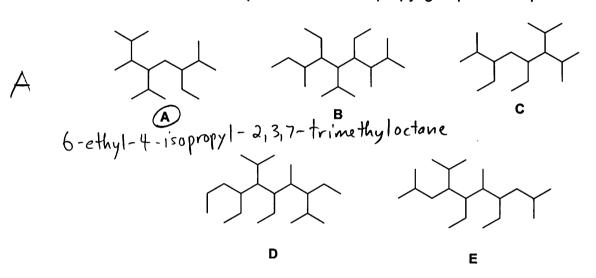
B

- d. alcohol
- anhydride
- 15. Ethyl acetate contains two oxygen atoms: the carbonyl oxygen, and the ester oxygen. Which of the following labels best describes the hybridization of the ester oxygen?


- The ester oxygen is not hybridized.
- 16. Consider the structures of benzene and cyclohexane:


benzene

cyclohexane


- B Which of these statements is true?
 - a. Both molecules are planar (all atoms are in one plane).
 - <u>б.</u> с. Benzene is planar, but cyclohexane is not.
 - Cyclohexane is planar, but benzene is not.
 - Neither benzene nor cyclohexane is planar.

17. Which of these compounds is 2,3-dimethylheptane?

18. Which of these compounds has an isopropyl group at the 4 position?

19. How many nodes are there in the C-C π^* molecular orbital in ethylene?

© 2 d. 3

e. Ethylene does not contain a π^* orbital.

20. The structure of caffeine is shown. Lone pairs are not explicitly drawn, but all atoms are neutral (formal charge = zero).

Caffeine

How many nonbonding molecular orbitals are there in caffeine?

- a. 2
- b. 4
- c. 6
- **(1)** 8
- e. Millions
- 21. There are three methyl groups in caffeine. What is the percentage of *p* character for the orbitals on a carbon in a methyl group?

a. 25%

b. 33.3%

c. 50%

d. 66.7%

(e) 75%

22. Which of these compounds is pentane?

B ~~

^

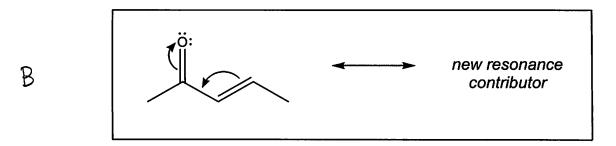
////

Sp3 is 25% s, 75% p

^

Α

E

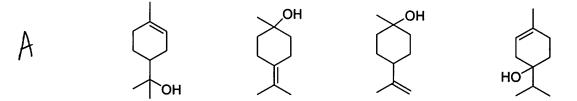

B

C

D

Ε

23. Curved arrows are used to convert one resonance contributor (resonance structure) to another. Examine the curved arrows shown on the structure below. Which of the choices is the resonance structure that would result from those arrows?



24. What is the formal charge on aluminum in this structure?

1-0 2+ 2-

B

Solange claimed, loudly, that the four were resonance structures contributing to the same resonance hybrid. She then physically attacked Jay Z. Witnesses indicate that during the attack she screamed "You can't call yourself an organic chemist!"

Who was correct, Jay Z or Solange?

different connectivity

Jay Z. The four compounds are constitutional isomers.

b. Solange. The four compounds are contributors to the same resonance hybrid.

- c. Neither Jay Z nor Solange were correct. The four compounds have no relationship to one another.
- d. Both Jay Z and Solange were correct. The four compounds are constitutional isomers AND resonance contributors to the same hybrid.