Exam #3 June 21, 2010 Name______

Please read and sign the Honor Code statement below:

I pledge that on my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this exam.

Signature

General Instructions: There are 12 pages, including this cover sheet. Be sure you have them all. Read each question carefully so that you know exactly what is being asked and what you need to write or draw. Your work on scratch pages will <u>not</u> be graded, so be sure everything you want graded is written on the exam itself. Good luck!

PERIODIC CHART OF THE ELEMENTS															INEDT		
IA	IIA	IIIB	IYB	VΒ	YIB	YIIB		YIII		IB	IIB	IIIA	IVA	YA	YIA	YIIA (
1 H 1.00797		•														1 H 1.00797	He 4.0026
3 Li 6.939	Be 9.0122											B 10.811	6 C 12.0112	7 N 14.0067	0 15.9994	9 F 18.9984	10 Ne 20.183
11 Na 22.9898												13 AI 26.9815	14 Si 28.086	15 P 30.9738	16 S 32.064	17 CI 35.453	18 Ar 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.102	∪a	Sc 44.956	47.90	V 50.942	51.996	Mn 54.9380	F e 55.847	CO 58.9332	NI 58.71	Cu 63.54	Zn	Ga	Ge 72.59	AS 74.9216	Se	Br 79.909	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.47	Sr 87.62	Y 88.905	Zr 91.22	Nb 92.906	MO 95.94	Tc	Ru	Rh	Pd 106.4	Ag 107.870	Cd	In	Sn 118.69	Sb 121.75	Te	126.904	Xe
55	_56	*57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs 132.905	Ba 137.34	La 138.91	Hf 178.49	Ta 180.948	W 183.85	Re 186.2	Os 190.2	r 192.2	Pt 195.09	Au 196.967	Hg 200.59	TI 204.37	Pb 207.19	Bi 208.980	Po (210)	At (210)	Rn
87	88	+89	104	105	106	107	108	109	110	111	112		1		<u> </u>	(= .0)	,,
Fr (223)	Ra	Ac (227)	Rf (261)	Db (262)	Sg	Bh (262)	Hs (265)	Mt (266)	? (271)	? (272)	? (277)						

Select the single best answer to each multiple choice question (1-15) and bubble it in on your Scantron. (4 pts each)

1. How many stereoisomers exist for this compound?

$$HO_2C$$
 OH CO_2H OH

a. 1 OH HO2C
$$CO_2H$$

b. 2
CO_2H

HO2C OH

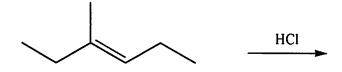
HO2C OH

HO2C OH

HO2C OH

OH

- 2. Which of the following statements is/are true?
 - F I. A racemic mixture is optically active.
 - F II. Diastereomers are nonsuperimposable mirror images.
 - T III. Meso compounds are achiral.
 - a. I
 - b. II
 - © III
 - d. All are true.
 - e. None are true.
- 3. Which of the following molecules could be chiral?
 - a. 2-methylhexane
- xane 📐
 - b. 3-methylpentane
 - © 2,4,6,8-tetramethylnonane
 - d. 2,3,4-trimethylpentane
 - e. 3-ethyl-2-methylpentane


4. Which term best describes the relationship between the molecules shown?

- a. constitutional isomers
- b. diastereomers
- c. enantiomers
- (d.) identical
- e. structural isomers
- 5. Which of the following statements about this structure is *true*?

- The two methyl groups are anti.
- The two methyl groups are gauche.
 - The two methyl groups are eclipsed.
 - d. The conformation shown is the highest energy conformation for this molecule.
- 6. Which of the following statements is *true* about the reaction shown here?

- a. The products are diastereomers, formed in unequal amounts.
- b. The products are diastereomers, formed in equal amounts.
- c. The products are enantiomers, formed in unequal amounts.
- d. The products are enantiomers, formed in equal amounts.
- e. The products are structural isomers, formed in unequal amounts.

C10 approaches from either face of planar cation with equal probability

7. For which of the following do you expect there to be the greatest percentage of molecules in the conformation with the substituent in an equatorial position?

a.

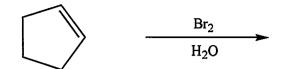
b.

c.

(d.)

- 8. Which of these processes is a *syn* addition?
 - a. Hydration of an alkene using water and catalytic sulfuric acid.
 - b. Addition of HCl to an alkene.
 - c. Addition of Cl₂ to an alkene.
 - d Hydroboration-oxidation of an alkene.
 - e. Both a and b.

9. An anti-Markovnikov hydration of an alkene was performed as shown here, and one of the reagents used for this reaction was labeled with an isotope of oxygen, ¹⁸O. This labeled oxygen ends up in the product as shown.


Which of the following choices correctly shows which reagent had the labeled oxygen?

- (a.) H $-^{18}O-^{18}O-^{18}O$
 - b. ¹⁸O——H
 - c. H—¹⁸O—H
- d. Either b or c.
- e. Any of these is correct.
- BH2 0:0-18-H

10. Which reagent(s) would you use to accomplish this transformation?

- a. Br_2/H_2O
- b. Hg(OAc)₂ and H₂O, then NaBH₄ and OH⁻
- © MCPBA
- d. HO⁻/H₂O
- e. H_3O^+/H_2O

11. Which of these structures is an intermediate in this transformation?

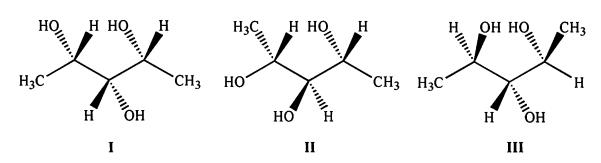
12. Which of these molecules is a product of the reaction shown?

a.
$$\frac{Br_2}{Br}$$

$$H_3C$$

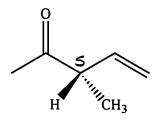
$$Br$$

$$Br$$

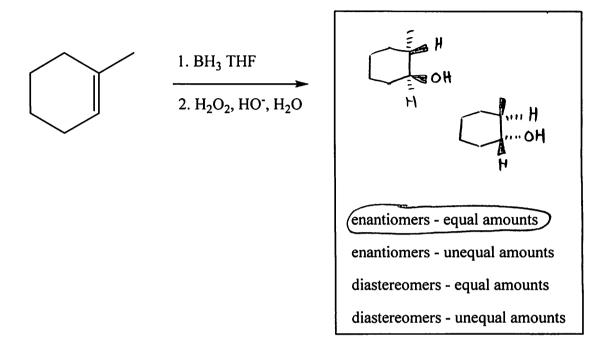

$$Br$$

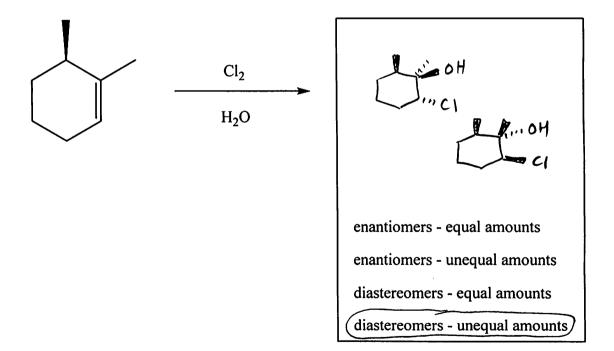
$$Br$$

b.
$$\underset{H_{3}C}{\overset{Br}{=}}$$

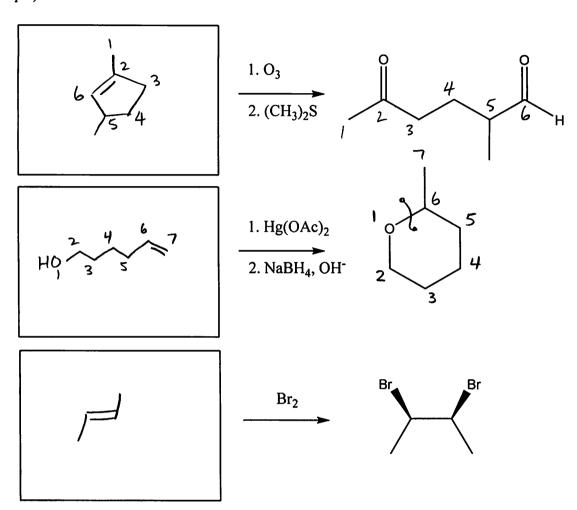

13. Which reagent(s) would you use to accomplish this transformation?

- H₂/Pd on C a.
- BH₃·THF, then H₂O₂, OH⁻, H₂O b.
- **©**
- Catalytic HNO₃ and H₂O would rearrange and not provide O₃, then H₂O₂ would rearrange shown of the following molecules is/one 1: d.
- 14. Which of the following molecules is/are chiral?

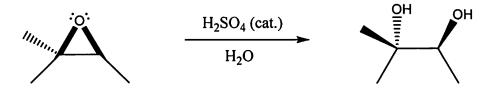



- I a. II ♨
 - III
- I and III d.
- II and III

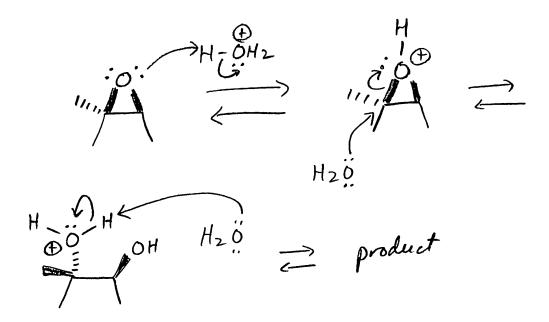
15. Assign the absolute configuration at the asymmetric carbon in this molecule as R or S.



R S 16. Draw the products of each of the reactions shown. Show stereochemistry in your drawings. Then indicate the relationship between the products and their relative amounts by circling the correct choice in the answer box. (12 pts)



17. Draw the structure of the starting material for each of the reactions shown. (12 pts)



18. Predict the major organic product of the reaction conditions shown and draw a mechanism to show how it is formed. For full credit, include all lone pairs of electrons, single electrons, non-zero formal charges and curved arrows. (10 pts)

19. The epoxide shown is transformed to a structure called a *vicinal diol* (OH groups on adjacent carbons) in aqueous sulfuric acid:

Although you have not yet seen this reaction, the mechanism involves patterns you know. Propose a mechanism for this transformation. (6 pts)

