- 1. (24 points) Multiple Choice: Circle the best possible answer.
- (i) Which reagent(s) listed below would work best in converting 2-methyl-2-hexene to 2-methyl-3-hexanol?
- (A) (1) H₂SO₄ (2) H₂O
- (B) 50% H₂SO₄/H₂O
- (C) (1) BH₂/THF (2) H₂O₂, NaOH
- (D) Br₂/H₂O
- (ii) Which structure corresponds to the trimer of (CH₃)₂C=CH₂ formed under conditions of cationic polymerization?
- (A) XXY
- (B) XY
- (C) XYY
- I I ,
- (iii) A compound X, C₆H₁₀, is optically active. Hydrogenation of the compound gives methylcyclopentane. Which compound shown below is compound X?

Name:				

Multiple Choice (continued): Circle the best possible answer.

- (iv) Which of the following procedures is the best method to prepare a racemic mixture of (2R,3R)- and (2S, 3S)-2,3-dibromobutane?
- (A) Photochemical bromination of 2-bromobutane
- (B) Addition of HBr to racemic 3-bromo-2-butene
- (C) Addition of Br₂ to cis-2-butene
- (D) Addition of Br₂ to trans-2-butene
- (v) In the solvolysis of t-butyl chloride, a minor product is 2-methylpropene, which results from the:

$$(CH_3)_3CCI + H_2O \longrightarrow (CH_3)_3COH + (CH_3)_2C=CH_2$$

(major) (minor)

- (A) E2 mechanism with OH acting as the base.
- (B) E2 mechanism with H₂O acting as the base.
- (C) E1 mechanism with OH acting as the base.
- (D) E1 mechanism with H2O acting as the base.
- (vi) In which of the solvents shown below would the following reaction take place at the fastest rate?

$$CH_3CH_2CH_2CH_2Br + NaN_3 \longrightarrow CH_3CH_2CH_2CH_2N_3 + NaBr$$

- (A) Ethanol
- (B) Acetic acid
- (C) Water
- (D) Dimethyl sulfoxide

2. (19 points)

(i) Cortisone is a natural steroid that can be isolated from the adrenal cortex. It has antiinflammatory properties and is used to treat a variety of disorders (e.g., as a topical application for common skin diseases). Circle all the stereogenic centers in the structure of cortisone shown below:

(ii) Give the absolute configurations at the stereogenic centers of each of the following molecules:

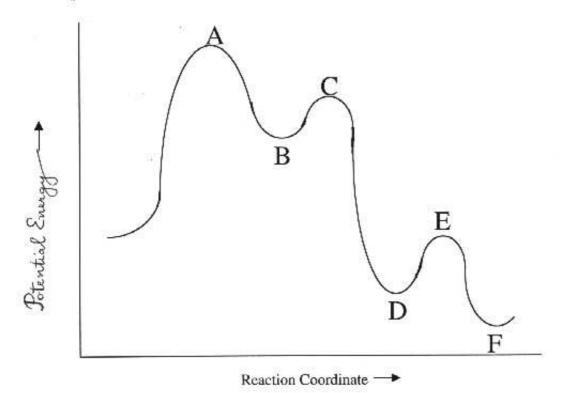
Absolute configuration at stereogenic center

(A)

(iii) Label the following pairs of structures as one of the following:

identical, constitutional isomers, enantiomers, or diastereomers.

(D)
$$CO_2H$$
 $H_2N - H$ OH OH NH_2 CH_3


3. (11 points) Propose a mechanism for the following reaction:

$$HOCH_2CH_2CH_2CH=CH_2$$
 $\xrightarrow{H_2SO_4}$ CH_3

CI	l ₃ 1) B ₂ H ₆ /diglyme	
	2) H ₂ O ₂ , NaOH	
H ₂ C=CH	-(CH ₂) ₃ CH ₃ 1) ?	ÇN CH₃CU(CH₂)₃CH₃
H	сн³соон	6
(CH ₃) ₂ C=0	CHCH ₂ CH ₂ CH=CHCH ₃ $1)$ O ₃ $2)$ H ₂ O, Z	Zn
1-methylcy	clohexene $\frac{Br_2}{H_2O}$	
O BrCH ₂ COO	CH ₂ CH ₃ NaI acetone	
2-Methyl-2	butene 50% H ₂ SO ₄ /H ₂ O	

.

(12 points) Consider the energy diagram illustrating the S_N1 mechanism for the hydrolysis
of tert-butyl bromide. Draw the structures of all the species represented by the letters A
through F.

- (12 points) Outline an efficient synthesis of each of the following compounds from the indicated starting material and any necessary organic or inorganic reagents.
- A. Ethyl alcohol to 1,2-dicyanoethane
- B. 2-bromopropane to 1-bromopropane