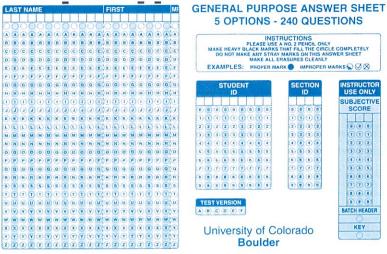
Time: 2 Hours

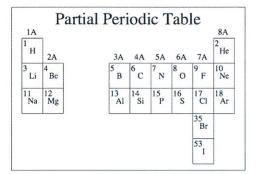
February 10, 2015

Please sign the Honor Pledge.

I pledge that


"On my honor, as a University of Colorado-Boulder student, I have neither given nor received unauthorized assistance on this work."

PRINT Last Name, First Name, Middle Initial


Please Sign Here

General Instructions: (I) Scantron: Questions 1-20 (75 pts) AND (II) Short Answers: Questions 21-23 (25 pts)

Section I: Complete the information requested on the scantron and bubble in the appropriate spaces using a No. 2 pencil.

If you change an answer, erase the undesired mark thoroughly. Mark only the best answer to each multiple-choice question. Use the back of the exam pages (for multiple choice questions 1-20 only) as scratch paper. There are 5 exam pages (with 20 MC questions and 3 short answer questions), a cover page, and two blank pages (scratch paper). When you are instructed to begin the exam, please check that you have all pages. Good luck! Please return the completed scantron sheet, SHORT ANSWER section, and this cover page (signed Honor Code) to the exam proctors. You may take the MULTIPLE-CHOICE section of the exam and scratch paper with you.

Useful Information

$$\Delta G^{\circ} = -RT ln K_{a}$$

$$K_{eq} = 10^{[(pKa, BH+) - (pKa, HA)]}$$

$$ln x = 2.303 log x$$

Recit.	Location	Day	Time	TA
221	EKLC M2B26	Tue	9:00 AM - 9:50 AM	Ed Guzman
222	EKLC M2B26	Tue	10:00 AM - 10:50 AM	Ed Guzman
226	EKLC M2B26	Tue	12:00 PM - 12:50 PM	Will Hartwig
230	EKLC M2B26	Wed	8:00 AM - 8:50 AM	Jordan Theriot
238	EKLC M2B26	Wed	4:00 PM - 4:50 PM	Jordan Theriot
244	EKLC M2B26	Thu	11:00 AM - 11:50 AM	Will Hartwig
247	EKLC M2B26	Thu	1:00 PM - 1:50 PM	Price Kirby

Table of Acidities

Acid	pK _a Value	Acid	pK _a Value
HI	-10.1	H_2O	15.7
HCI	-3.9	Alcohols	16-18
H_3O^+	-1.7	HC≡CH	26
CH ₃ COOH	4.7	NH_3	36
NH_4^+	9.3	$H_2C=CH_2$	45
Phenol	10	CH_4	60

Section IA: Questions 1-5 (3 points each; total: 15 points)

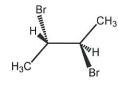
1) What is the molecula	ar formula for butane?		
(A) C_3H_6	(B) C ₃ H ₈	(C) C ₄ H ₈	(D) C_4H_{10}
2) What is the functional	al group in CH3COCH3?	Hint: Draw a Lewis stru	cture.
(A) aldehyde	(B) ester	(C) ketone	(D) ether
3) Select the molecule t	hat is an amide.		
(A) CH ₃ CHO		(B) CH ₃ COOCH ₂ CH ₃	
(C) CH ₃ CONHCH ₃		(D) CH ₃ NH ₂	
4) Which is the stronge	st acid?		
(A) NH ₄ ⁺	(B) HC≡CH	(C) NH ₃	(D) C_2H_6
5) Which is the stronge	st base?		
(A) OH	(B) CH ₃ CH ₂ CH ₂ CH ₂ ⁻	(C) NH ₂ ⁻	(D) CH ₃ O ⁻
Section IB: Questions	6-20 (4 points each; tot	al: 60 points)	
6) Which molecule is li	near?		
$(A) C_3H_8$	(B) C ₂ H ₆	(C) C ₂ H ₄	(D) C_2H_2
7) What is the hybridiza	ation of the <i>central</i> carbo	on atom in allene, H ₂ C=C	$C=CH_2$?
(A) sp	(B) sp^2	(C) sp^3	(D) none of these
information, select the (A) The carbon is sp ³ he (B) The carbon is sp ³ he (C) The carbon is sp ² he (D) The carbon is sp ² he	ne statement that best destybridized and the unpaired bybridized and the unpaired bybridized and the unpaired bybridized and the unpaired structure for the nitronia	, has a trigonal planar shaceribes bonding in the meded electron occupies a 2ped electron occupies an staired electron occupies and electron occupies and electron occupies and sum ion, NO ₂ ⁺ . What is the	ethyl radical? o orbital. p ³ orbital. a 2p orbital. p ² orbital.
(A) 0	(B) +1	(C) -1	(D) +2

10) Which organic solvent is nonpolar?

- (A) Hexane
- (B) Dichloromethane
- (C) CH₃OCH₃
- (D) CH₃OH

11) Which compound releases the most heat in kJ/mol on combustion?

- (A) 2-Methylpropane
- (B) 2-Methylbutane
- (C) 2-Methylpentane
- (D) 2-Methylhexane


12) Why can heats of combustion data for *isomeric hydrocarbons* be used to compare their relative stabilities?

- (I) Combustion of isomers gives different final energy states.
- (II) Combustion of isomers gives the same final energy states.
- (III) Isomeric hydrocarbons have different potential energies.
- (IV) Isomeric hydrocarbons have the same potential energies.
- (A) I and III
- (B) II and III
- (C) I and IV
- (D) II and IV

13) Arrange these alkanes in order of decreasing boiling point.

- (I) n-Heptane
- (II) 2,2,3-Trimethylbutane
- (III) 2,3-Dimethylpentane
- (A) I > II > III
- (B) II > III > I
- (C) III > I > II
- (D) I > III > II

14) What is the dihedral angle between the two bromine atoms in the wedge-and dash projection shown?

- $(A) 60^{\circ}$
- (B) 90°

- $(C) 120^{\circ}$
- (D) 180°

15) Draw the potential energy (PE) diagram for rotation about the C2-C3 bond in 2,2-dimethylpropane. Select all the statements that *correctly* describe this potential energy diagram.

- (I) All the eclipsed conformations are equivalent and represent potential energy maxima.
- (II) All the staggered conformations are equivalent and represent potential energy minima.
- (III) The shape of the PE profile more closely resembles that of butane.
- (A) I and II
- (B) I and III
- (C) II and III
- (D) I, II, and III

- **16)** Which classification best describes the B(CH₃)₃ molecule?
- (A) Brönsted acid
- (B) Brönsted base
- (C) Lewis acid
- (D) Lewis base
- 17) What is the magnitude of the equilibrium constant when trimethylamine, (CH₃)₃N, reacts with HCl.
- (A) K = 0
- (B) K = 1
- (C) K > > 1
- (D) K << 1
- **18)** Using MO theory, select the species that does not exist?
- $(A) H_2$

- (B) H_2^+
- (C) H_2^-
- (D) H_2^{2-}
- **19)** Frontier orbitals participate in an organic chemical reaction. Examine the nucleophilic substitution reaction shown below and identify the HOMO and LUMO in this example.

- (A) HOMO is $\sigma^*_{\text{O-H}}$ in the hydroxide ion; LUMO is $\sigma^*_{\text{C-Br}}$
- (B) HOMO is $\sigma^*_{\text{O-H}}$ in in the hydroxide ion; LUMO is $\sigma_{\text{C-Br}}$
- (C) HOMO is the nonbonding MO in the hydroxide ion; LUMO is $\sigma^*_{\text{C-Br}}$
- (D) HOMO is the nonbonding MO in the hydroxide ion; LUMO is $\sigma_{C\text{-Br}}$
- **20)** Which is the nucleophile in the reaction shown?

- (A) Hydroxide ion
- (B) CH₃CH₂Br
- (C) CH₃CH₂OH
- (D) Bromide ion

	CHEM 3311-200 Exam 1 February 10, 2015	Assigned Seat # Recitation Section # (Note: -5 points for missing Recitation section #)
Please sign the Honor Pledge.		
"On my honor, as a University of Col-	I pledge that orado-Boulder student, I have neith assistance on this work."	er given nor received unauthorized
DEPENDENT AND DESCRIPTION	T 1/1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
PRINT Last Name, First Name, Middle	Initial Please Sign H	ere
Section II: SHORT ANSWER Qu		
,		
Section II: SHORT ANSWER Qu	uestions 21-23 (total: 25 poin	
Section II: SHORT ANSWER Qu	uestions 21-23 (total: 25 poin	

21) Consider the <u>constitutional isomers</u> of C₇H₁₆. Draw, <u>using BOND LINE formulas</u>, only those isomers that are *substituted pentanes*. Any FOUR *substituted pentanes* of C₇H₁₆ are acceptable (4 points). Write the correct IUPAC name for each isomer (6 points).

	Bond-line Formulas of Isomeric Pentanes	IUPAC Names of Isomeric Pentanes
(1)		2,3-dimethylpentane
(2)		2,4-dimethylpentane
(3)		2,2-dimethylpentane
(4)		3,3-dimethylpentane

(A) <i>Circle</i> the stronger acid. (2 points)						
	C ₂ H ₅ SH	I) oi	C_2I	Н5ОН		
	olain (only 1 or 1 nd acid strength		r reasoning in te	rms of the relatio	nship between	
· Elem bon o	ent effe d, weat	ct, goin Eer bon	g down d, rel	group, / atively	longer S- stronger	·H acid
· Great great 23) For each pa	ter relations ter polaristic pola	tive sta Izability or charged spec	rbility; acid of ies, circle the str	of of stissocial and stronger Brönsted and the stronger bo	du tion equi	e to librium
bonds. (10 poir	118)					more For
		Charge Effect	Resonance Effect	Relative Electronegativities	Relative Bond Strengths	than
CH₃OH	(CH ₃) ₂ NH			✓		ОН
CH ₃ OH	⊕ CH ₃ OH ₂	/				
HF	HBr				V	
CH₃COOH	C₂H₅OH		V			
NH ₃	CH₄ Į			V		u.

22) Ethane thiol, C_2H_5SH , has a pK_a = 10.5 compared to a value of 15.9 for ethanol, C_2H_5OH .