ANSWER KEY

CHEM 3311-200 Exam 3 November 15, 2007

By printing my name below, I pledge that "On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work."

٨	Name	4
Recitation T Recitation D	A's Nameay & Time	
Grading Info	ormation	
Page # 2 3 4 5 6 7	Points Possible 15 20 15 20 20 10	Your Score — — — — — — —
		TOTAL (out of 100)

General Instructions

- (1) This is a CLOSED BOOK exam! No notes and molecular models are allowed.
- (2) You have 2 hours to complete the exam. You may not leave the room during the first 90 minutes of the exam.
- (3) Write your name at the top of each page, starting with page 2.
- (4) Use the back of exam pages for scratch paper.
- (5) If caught cheating, you will receive at best an F for this exam. The instructor reserves the right to proceed further in compliance with university policies.

- 1. Multiple Choice Questions (15 points)
- (i) Identify the most stable alkene.
- (A) 1-Hexene
- (B) cis-3-Hexene
- (C) trans-3-Hexene
- (D) 2-Methyl-2-pentene
- (ii) When 2-methyl-2-butanol is treated with H_2SO_4 at $80^{\circ}C$, 2-methyl-2-butene is the major product. What is the mechanism for this reaction?
- (A) S_N1
- (B) E1
- (C) SN2
- (D) E2
- (iii) When cyclohexyl chloride was treated with sodium ethoxide in ethanol at 55°C, cyclohexene was obtained in 100% yield. What is the mechanism for this reaction?
- (A) S_N1
- (B) E1
- (C) 5_N2
- (D) E2
- (iv) What is the organic product obtained when 1-butene is reacted with HBr in the presence of peroxides?
- (A) 1-Bromobutane
- (B) 2-Bromobutane
- (C) 3-Bromo-1-butene
- (D) 1,2-Dibromobutane
- (v) Consider the addition reactions of alkenes. For (E)-2-butene, which reaction conditions will NOT lead to net syn addition to the double bond?
- (A) Hydroboration-oxidation
- (B) Br₂ in water
- (C) H_2 in the presence of Pt
- (D) Epoxidation

Name:	

- 1. Multiple Choice Questions (20 points)
- (vi) Which alkene will react at the fastest rate in 50% H₂SO₄?
- (A) 2-Methyl-2-butene
- (B) 1-Butene
- (C) cis-2-Butene
- (D) trans-2-Butene
- (vii) A dimethylcyclopentene was identified by ozonolysis; zinc was included during the hydrolysis step as a precautionary measure. The only product obtained was $OHC-CH(CH_3)-CH_2-CH(CH_3)-CHO$. Identify the compound.
- (A) 1,2-Dimethylcyclopentene
- (B) 1,3-Dimethylcyclopentene
- (C) 3,5-Dimethylcyclopentene
- (D) 4,4-Dimethylcyclopentene
- (viii) Which constitutional isomer reacts fastest with NaI in acetone?
- (A) 2-Chloro-2-methylpropane
- (B) 2-Chlorobutane
- (C) 1-Chloro-2-methylpropane
- (D) 1-Chlorobutane
- (ix) What is the major product in the reaction between 2-methylpropene and Br_2 in H_2O ?
- (A) 3-Bromo-2-methylpropene
- (B) 1,2-Dibromo-2-methylpropane
- (C) 2-Bromo-2-methyl-1-propanol
- (D) 1-Bromo-2-methyl-2-propanol
- (x) Compound X is optically active. Hydrogenation of this compound produced methylcyclopentane. What is the identity of compound X?
- (A) Methylenecyclopentane
- (B) 1-Methylcyclopentene
- (C) 3-Methylcyclopentene
- (D) 4-Methylcyclopentene

lama:	
Vame:	

2. (15 points)

Show the arrow-pushing mechanism (including lone pairs and formal charges) for the reaction of (Z)-2-Pentene with peroxyacetic acid in CH_2Cl_2 .

- (A) If two stereoisomers are formed, for each product, label all chirality centers R and S as appropriate.
- (B) Write a complete IUPAC name for each product.
- (C) Clearly state the relationship between the stereoisomeric products as diastereomers, enantiomers, or meso form. Circle your answer!

enantiomers

$$(z)$$
-2-Pentene

H

 $C=C$
 $(z,3s)$ -2,3-epoxy pentane

 $(z,3s)$ -2,3-epoxy pentane

 $(z,3s)$ -2,3-epoxy pentane

Alternate exam: (E)-2- Pentene

(25,35)-2,3-epoxypentane

3. (20 points)

Complete the reaction by filling in the reactant(s) or product(s) as appropriate. If stereoisomers are formed, show each one with the correct stereochemistry and label as diastereomers, enantiomers, or meso compound.

A.
$$HO \longrightarrow CH_2BR \xrightarrow{H_3C-C-ONa} HO \longrightarrow CH_2-O-C-CH_3 + NaBr$$

B.
$$CH_3(CH_2)_{15}CH_2CH_2CI$$
 $KOC(CH_3)_3$ $CH_3(CH_2)_{15}CH = CH_2$

D. 2-Methyl-2-butene
$$\frac{Br_2}{H_2O}$$
 $\frac{Br_2}{H_2O}$ $\frac{Br_2}$

F.
$$\frac{\text{OH}}{\text{heat}}$$
 + $\frac{\text{(major)}}{\text{(minor)}}$

G.
$$\frac{1. \text{ Hg(OAc)}_2, \text{H}_2\text{O}}{2. \text{ NaBH}_4}$$

CHEM 3311-200, Exam 3, Page 6A	CHEM	3311-200.	Exam	3.	Page	6A
--------------------------------	------	-----------	------	----	------	----

Name:	
Nume	

- 4. (10 points) Circle the mechanistic symbols (S_N1 , S_N2 , E1, E2) that are most consistent with each statement.
- (A) Reaction of methyl bromide with sodium ethoxide in ethanol proceeds by this mechanism.

5_N1

S_N2

E1

E2

(B) These reaction mechanisms represent concerted processes.

S_N1

S_N2

E1

E2

(C) These reaction mechanisms involve carbocation intermediates.

S_N1

S_N2

E1

E2

- 5. Organic Synthesis (10 points) Outline an efficient synthesis of each compound from the indicated starting material and any necessary organic or inorganic reagents.
- (A) (S)-sec-Butyl azide from (R)-sec-butyl alcohol

D) OH is a

Door LG;
Sonvert to
Sosylate, a (S)-sec-Butylazide (R) sec-Butyl tosylate (R)-sec-Butylalcohol

Good LG

OS, 2 displacement;
Na N3

DMSO

DMSO

pyridine

configuration figuration (B) (CH3)3C-O-CH3 from an alkyl bromide

OR

 $CH_{3} = CH_{3}BR$ $K^{\dagger} O C(CH_{3})_{3}$ DMSO $(CH_{3})_{3} = CH_{3}BR$ $(CH_{3})_{4} = CH_{3}BR$ $(CH_{3})_{4} = CH_{4}BR$ $(CH_{3})_{4} = CH$

6. (10 points) Draw a <u>stepwise mechanism</u> for the reaction shown. You must show the arrows, lone pairs, and formal charges to receive credit.

Step 3:

$$H_2O$$
 H_2SO_4
 H_2O
 H_2SO_4
 H_2O
 H_2SO_4
 CH_3
 CH_3