CHEM 3311 Fall 2001 Exam I

Your Recitation TA's nan	ne:	
Please write your name o	n each exam page.	
Please check to see that y	you have all 7 questions. Read the	e questions very carefully. Note: All question:
ARE NOT weighted equal	llyllll!	
	Question #	Points Earned
	1 (25 points)	<u></u>
	2 (12 points)	<u> </u>
	3 (8 points)	
	4 (15 points)	
	5 (15 points)	
	6 (13 points)	
	7 (12 points)	
	Max: 100	Total

A. Attachments

Name:

Table of pK_a values

Periodic Table

B. Special Instructions

This is a "Closed Book" exam. You are permitted to use molecular models. Answers should be written in the spaces (boxes) provided. Additional scratch paper will not be graded or collected. You have an hour and thirty minutes to complete the exam.

Name:			
Manne.			

- 1. (25 points) Multiple Choice: Circle the best possible answer.
- (i) Identify the compound with the lowest (magnitude of ΔH° combustion) heat of combustion.
 - (A) Heptane

(B) 2,4-Dimethylpentane

(C) 3-Methylhexane

(D) 2,2,3-Trimethylbutane

(ii) What is the IUPAC name of the compound shown in the following Newman projection?

(A) 1,2,3-Trimethylbutane

(B) 2,3-Dimethylpentane

(C) 2-Isopropylbutane

(D) 2,3,4-Trimethylpentane

- (iii) Arrange the following alkanes in order of increasing boiling point.
 - 1. 2,3-Dimethyl pentane
 - 2. Heptane
 - 3. 2,2,3-Trimethylbutane
 - (A) 2.2,3-Trimethylbutane < 2.3-Dimethyl pentane < Heptane
 - (B) 2.3-Dimethyl pentane < Heptane < 2,2,3-Trimethylbutane
 - (C) 2,3-Dimethyl pentane < 2,2,3-Trimethylbutane < Heptane
 - (D) 2,2,3-Trimethylbutane < Heptane < 2,3-Dimethyl pentane
- (iv) Which one of the following is not a good method to prepare bromocyclopentane?
 - (A) Cyclopentane is reacted with Br2 in the presence of light.
 - (B) Cyclopentanol is heated with HBr.
 - (C) Cyclopentanol is reacted with PBrs.
 - (D) Cyclopentanol is heated with NaBr.
- (v) Which compound produces five different monochlorination products?
 - (A) 2,2-Dimethylbutane

(B) 2,3-Dimethylbutane

(C) 2-Methylpentane

(D) 3-Methylpentane

Name:		
Maine.		

2. (12 points) In the first step of the reaction of electrophilic reagents with benzene, the electrophile accepts an electron pair from the π system of benzene to form the cyclohexadienyl cation shown below (E is the electrophile):

(A) Draw the two most important resonance forms of the cyclohexadienyl cation. You may use a line for each bonding pair of electrons, but show lone pairs and formal charges, as necessary. Show the curved arrow notation for electron delocalization.

- (B) What is the hybridization of carbon at the cationic center?
- 3. (8 points) Name (in the spaces provided) the functional groups in the molecule shown below:

omplete the	following acid-ba acid, weaker ac	se reaction, and s	- 10 20	
the stronger	acid, weaker ac		how lone pairs a	100 100 10
	al to, less than, o	id, stronger base, or greater than 1.		and formal charges where a. Indicate whether the
≡ CH	+ ОН			
equilibrium	is favored.			
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	he acetylide ene (ethyne) olvent? Write	he acetylide ion is a useful nu ene (ethyne) with NaNH ₂ (soo	he acetylide ion is a useful nucleophile in organ ene (ethyne) with NaNH ₂ (sodium amide) in liqu colvent? Write an equation to support your answ	he acetylide ion is a useful nucleophile in organic synthesis. It is ene (ethyne) with NaNH ₂ (sodium amide) in liquid ammonia as t colvent? Write an equation to support your answer, and show VE

lame:		
. (15 points) Two stereoisome	ers of 1-bromo-4-methylcyclohexane are formed when trans-	4-
nethylcyclohexanol reacts with	HBr. Draw the most stable chair conformation(s) of	
i) trans-4-methylcyclohexanol,		
A) (25 A)	bromo-4-methylcyclohexane (label your structure as cis-	or trans-)
	at "smaller" substituent on a six-membered ring than is a me	
[1977] [18명 - 1987] [188] [188] [188] [18]	same size as a methyl group.	
)	upatrica fixuari aris del catarin que que se en esta que en esta en esta en el catarina en el catarina de entre en esta en el catarina en el	
V		
ii)		
	11	
	11	į.
		- 1
		1
Briefly (using two or three ser	ntences) explain (in the box provided) why two stereoisomer	s of 1-bromo-4-
	ed instead of a single product.	
no Enjoy Cloric Action West Torris		

Use this space for scratch work. Only the information in the above boxes will be graded!!!!!!

Name:	
그가 이렇게 왜 가지 아니까 가장 된 경기가 먹었다. 나는 사이에 되었다.	ide has been prepared by the free-radical chlorination of cyclopropane.
	al sequence) mechanism for this reaction in the boxes provided (only one s initiation, propagation, termination, etc. Show CLEARLY the correct
arrow notation.	
	2

Use this space for scratch work. Only the information in the above boxes will be graded!!!!!!

2.77			
Name:			
1441116			

7. (12 points) The energy diagram for the reaction of 2-methyl-2-butanol with HCl is shown below. Draw the structures of the reactants, intermediates, transition states, and products in the appropriate boxes. Show all lone pairs, formal charges and partial charges as necessary.

Reaction Coordinate

Use this space for scratch work. Only the information in the above boxes will be graded!!!!!!

IA.	IIA	ĵ.							1 H .01							,	IIIA	11/	^^	VA	, Y	TIA _	VIIA	2 He 4.0
3 Li 6.94	4 Be 9.01																5 B 10.8	12	:	7 N 14,0	10	8) 5.0	9 F 19.0	10 Ne 20.2
11 Na 23.0	12 Mg 24.3	IIIB	1	VB	VB	VI	ів	VIIB	_	×		_	_	IB	n	В	13 AI 27.0	14 S 28		15 P 31.0		16 S 2.1	17 CI 35.5	18 Ar 39.5
19 K 39.1	20 Ca 40.1	21 Sc 45.0		2	23 V 51.0	24 C) 52	r I	25 Mn 54.9	20 F 55	e 1	27 Co 8.9	28 Ni 58.	- 1	29 Cu 63.5	30 Zn 65/	-1	31 Ga 69.7	3: G 72		33 As 74.9		34 Se 9.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 Y 88.9		0	41 Nb 92.9	4; M 96.	fo	43 Tc (99)	4 R 101	u	45 Rh 02.9	46 Pd 106	1	47 Ag 107.9	48 Cd 112		49 In 114.8	S 111	n	51 Sb 121.8		52 Te 27.6	53 1 126.9	54 Xe 131.
55 Cs 132.9	56 Ba 137,4	57 *La 138.9	1	72 Hf 18.5	73 Ta 181.0	V	C	75 Re 186.2	70	8	17 lr 12.2	78 Pt 195		79 Au 197.0	80 Hg 200	1	81 TI 204.4	8X P 20		83 Bi 209.0		34 Po 210)	85 At (210)	86 Ra (222
87 Fr (223)	88 Ra (226)	89 *Ac (227)		58 Ce 140	P		60 Nd 144	Pm	١,	62 Sm 150.4	63 Eu 152	-1	64 Gd 157.	65 T1 3 158	,	66 Dy 62.5	67 He 164	0	68 E: 167	r	69 Tm 68.9	70 Y1 173	1.	
+ Ac () mc of	tinide S ans ma most st	ss numb	er	90 TI (23	9 9	1 'a (1)	92 U 238	9 N	3 p	94 Pu (242)	95 Am (243		96 Cm (247)	97 Bi		98 Cf 251	9	9 (s (54)	10 Fr (25	0	101 Md 256)	10 N (25	2 10 0 L	3

Table of pKa Values

oK _e Values	117020	Compound	pK.	Compound	pK,
Compound	pK _a	Compound	pr.	Compound	pn,
CH₃C=ÑH	-10.1	O ₂ N-NH ₃	1.0	~ P	
HI	-10	O ₂ N-NH ₃	1.0	сн₁- √сон	4.
HBr HBr	-9	N	1.0	O MARI	
+ОН		Na		сн,о-Сон	4
сн,сн	-8	HO		HN3	4
+OH		СІзСИСОН	1.3	NH ₃	4
сн,ссн,	-7.3	HSO.	2.0		
HCI	-7	H ₁ PO ₄	2.1	9	
CH ₃ SH	-6.8	HNON		СН,СОН	4
+он			2.5	A 10	
сн-сосн,	-6.5	N H		TY	4
-он			Han	J. H.	
сн,сон	-6.1	FCH ₂ COH	2.7	н	
H ₂ SO ₄	-5	Y	100	CH, NH,	. 5
/T_H	-3.8	CICH ₂ COH O	2.8		
J. H	-3.8		DMTH		1
		H+CH₂COH	2.9	J.N.	
сизсизосизси,	-3.6	O ICH₂COH	3.2	CH-O-NH.	
сн,сн,бн	-2.4	HF	3.2	CH ₂ O-NH ₃	
	7.00	HNO ₂	3.4	CH ₃ C-NHCH ₃	3
сн.Вн	-2.5	_ 0		CH,	
H ₂ O*	-1.7	O ₂ N—COH	3.4	0 0	
HNO ₃	-1.3			CH ₂ CCH ₂ CH	
CH ₃ SO ₃ H	-1.2	9	PHE.	HONH	-
		нсон	3.8	H ₂ CO ₁	
→SO3H	-0.60	Br - NH2	3.9	nicoi	
+OH		Br NH ₂	7.4	HN NH	t
CH ₂ CNH ₂	0.0	- 9		H ₂ S	1
O		вг- Сон	4.0	/—\ \	19121
F,CCOH	0.2	<u> </u>		O ₂ N—()—OH	7
0	Via	7 1			
СРССОН	0.64	√ }-сон	4.2	H ₂ PO ₄	7
- necon	12.07			/=\	7
N-OH	0.79			⟨ }_SH	1700

K, Values (Continu	ied)				87
Compound	pK,	Compound	pK _a	Compound	pK.
$\overline{}$		~ .		P	119
X	8.0	⟨ ⟩-NH,	10.7	снусн	17
н		(CH ₃) ₂ NH ₂	10.7	(CH ₃) ₃ COH	18
I ₂ NNH ₃	8.1	(CH ₃) ₂ NH ₂	10.1	P	
9			44.4	сн,ссн,	20
сн,соон	8.2	N.	11.1	L CHI	24.5
CH ₃ CH ₂ NO ₂	8.6	нн	1	CH3COCH2CH3	25
9 9 1)-04E	CH ₂ CH ₂ NH ₂	11.0	HC=CH	25
сн, ссн, ссн,	8.9			CH,C=N	DHE242
Van N	8.9	SN III	11.3	9	1
NN		н		CH ₂ CN(CH ₂) ₂	30
HC=N	9.1	HPO ₄ 2-	12.3	NH ₃	36
ر0 ـ		CF₁CH₂OH	12.4	\cap	36
		0 0	*1	H	
***	9.3	CH2CH2OCCH2COCH2CH3	13.3	CH ₃ NH ₂	40
н н		HC≡CCH ₂ OH	13.5		
ci-()-on	9.4	0		⟨сн,	41
. `-		H-NCNH-	13.7	- A	
NH ₄	9.4	CH,			43
HOCH3CH2NH3	9.5	CH,NCH,CH,OH	13.9	CH2-CHCH,	43
9.7		CH ₃		CH ₂ =CH ₂	44
H ₂ NCH ₂ CO	9.8	/ - \		T (199)	46
/-	16.0	N NH	14.4	CH ₄	50
○ ⊢он	10.0	CH-OH	15.5	CH ₁ CH ₁	50
сн, — Он	10.2	H-0	15.7	\cap	
		CH ₂ CH ₂ OH	16.0		52
HCO;	10.2	o es			
CH,NO,	10.2	CH ₁ CNH ₂	16		
н-м-(Т)-он	10.3		16.0		
		О∕-ёсн₃	10.0		
CH ₃ CH ₂ SH	10.5		-17		
(ch, NH	10.6	(N)	-17		
9 9.		H			
CH ₂ CCH ₂ COCH ₂ CI	41 10.7				
CH ₂ NH ₂	10.7				