Problem with each	1 (30 poi of the fol	nts) Give the	mechanisti ients. Circ	c symbols (S	S _N 1, S _N 2, E1,E2 ver.) that are most co	nsistent
A) React	ion of me	thyl bromide v	vith sodiur	n ethoxide p	roceeds through	which mechanis	sm(s).
	$S_N 1$	8 _N 2	EI	E2			
B) Reacti	ion of eth	yl bromide wi	th sodium	ethoxide pro	ceeds through v	which mechanism	(s)
	$S_N 1$			(E2)		502 - ch	

C) When cyclohexyl bromide is treated with sodium ethoxide in ethanol, the major product is formed by this mechanism.

 $S_N 1$ $S_N 2$ E1 E2

D) The substitution product obtained by solvolysis of tert-butyl bromide in ethanol arises by this mechanism.

 $(S_N 1)$ $S_N 2$ E1 E2

E) In ethanol that contains sodium ethoxide, tert-butyl bromide reacts mainly by this mechanism.

 $S_N 1$ $S_N 2$ E1 E2

F) These reactions mechanisms represent concerted processes.

 $S_N 1$ $S_N 2$ E1 E2

G) Reactions that proceed by these mechanisms are stereospecific.

 $S_N 1$ $S_N 2$ E_1 E_2

H) These reactions involve carbocations.

(S_N1) S_N2 (E1) E2

I) If a carbon skeleton rearrangement occurs, it most likely to occur in which mechanism(s).

 (S_N1) S_N2 (E1) E2

J) Alkyl iodides react faster than alkyl bromides in reactions that proceed by these mechanisms.

 (S_N1) (S_N2) (E1) (E2)

Problem 2. (30 points) Give only the major products for the following reactions. If no reaction occurs, please state so.

B)
$$C = CH_3 \xrightarrow{\text{KOC(CH}_3), DMSO}$$
 $C = C + C$

G)
$$C \equiv CH$$
 $\frac{1.O_3}{2.H_2O}$

Problem 3. (20 points) How would you prepare the following compounds from the designated starting materials and any necessary organic or inorganic reagents.

A) meso-2,3-Dibromobutane from 2-butyne.

B) 3-Cyanocyclopentene from cyclopentene.

Problem 4. (5 points) What two compounds would you use as starting material for the synthesis of the following compound employing the Diels-Alder reaction?

Problem 5. (5 points) Give the mechanism for the following reaction. Use curved arrows to show the flow of electrons.

$$H_{3}C - C = CH_{2} \xrightarrow{H_{3}O^{+}} H_{3}C - C - CH_{3}$$

$$\downarrow H_{3}O^{+}$$

$$\downarrow H_{3}O^{+}$$

$$\downarrow H_{3}O^{+}$$

$$\downarrow H_{3}O^{-} \downarrow H_{3$$

Problem 6. (10 points) Consider the addition of 1 equivalent of DBr in enthanol to the following compound. What product corresponds to the one formed under kinetic control and the one formed under thermodynamic control.

kinetic product=

thermodynamic product=