Chemistry 3311-100

Organic Chemistry/Dr. Barney Ellison Thursday: Feb. 13th @ 7:00pm → 9:00/1st Exam/Math 100

Name: (please print)

- 1. (10 pts) Write a Lewis structure for each of the following Lewis structures.
- a) C2H5Cl (ethyl chloride)
- b) C2H3Cl (vinyl chloride)
- c) C2HBrClF3 (halothane; all three fluorines are bonded to same C)
- d) C2Cl2F4 (Freon 114; each carbon bears one chlorine)

2. (10 pts) Calculate K_a for each of the following acids, given its pK_a . Rank the compounds in order of decreasing acidity.

Strongest acid -> Weakest acid

Okelie werd > aspirin > formic acid > ascorbic
acid

Aspirin, pK_a = 3.48 $\sqrt{4} = \sqrt{5}^{-3.45}$ Formic acid (HCOOH) pK_a = 3.75 $\sqrt{4} = \sqrt{5}^{-3.75}$

Oxalic acid (HOOC-COOH), pKa = 1.19 Ka = 10 -1.19

Ascrobic acid, pK = 4.17 Ka = 10 - 4.17

L-ascorbic acid

aspirin

- 3. (10 pts) Write a structural formula for each of the following compounds:
 - a) 6-Isopropyl-2,3-dimethylnonane

b) 4-tert-Butyl-3-methylheptane

c) 4-Isobutyl-1,1-dimethylcyclohexane

d) sec-Butylcycloheptane

e) Cyclobutylcyclopentane

4. (10 pts) Two forms of glucose are drawn below. The sixmembered ring is known to exist in a chair conformation in each form. Are they different representations of the same molecule or are they stereoisomers? What substitutents occupy the axial sites?

5. (10 pts) Write the structure of the principal organic product of each reaction.

d) CH₂CH₂OH
$$\frac{2e_{1}}{heat}$$

$$\begin{array}{c} & & \\$$

- 6. (10 pts) Write the chemical equation for the reaction of 1-butanol with each of the following:
 - a) NaNH₂

CH3 CH2 CH2 CH2 OH CH3 CH2 CH2 CH200 Nat

b) HBr/heat

c) NaBr/H2SO4/heat

e) SOCl₂

7. (10 pts) What is the product of the following reaction? Write me a mechanism.

8. (10 pts) What is the product of the following reaction? Write me a mechanism.

(20 pts) Cyclopropyl chloride has been prepared by the freeradical chlorination of cyclopropane. Write me a mechanism.

$$CI - CI \xrightarrow{60} 2 CI.$$

$$CI \cdot + \times \longrightarrow HCI + \Delta$$

$$\Delta + CI - CI \longrightarrow X + CI.$$

$$CI \cdot CI \longrightarrow X \times \longrightarrow$$