Chemistry 3311-100

Organic Chemistry/Dr. Barney Ellison Thursday: April 18th @ **7:00pm** → **9:00**/3rd Exam/Math 100

____ (please print) Name:

- 1. (20 pts) Predict the major organic product of each of the following reactions.
- a) cyclohexyl bromide and potassium ethoxide

b) ethyl bromide and potassium cyclohexanolate

c) sec-butyl bromide solvolysis in methanol

 sec-butyl bromide solvolysis in methanol containing 2 M sodium methoxide.

 (10 pts) Treatment of 3-methyl-2-butanol with HCl yielded only a trace of 2-chloro-3-methylbutane. An isomeric chloride was isolated in 97% yield. Suggest a reasonable structure for this product.

$$CH_{3}-CH-CH$$

$$CH_{3}$$

$$CH_{3}-CH-CH$$

$$CH_{3}$$

$$CH_{3}-CH$$

$$CH_{3}$$

$$CH_{3}-CH$$

$$CH_{3}$$

$$CH_{3}-CH$$

$$CH_{3}$$

3. (10 pts) What two stereoisomeric substitution products would you expect to isolate from the hydrolysis of *cis-*1,4-dimethylcycylohexyl bromide? From the hydrolysis of *trans-*1,4-dimethylcycylohexyl bromide?

4. (10 pts) Suggest efficient of (E)- and (Z)-2-heptene from propyne and any necessary organic or inorganic reagents.

CA₃-
$$C=C-CH_2CH_2CH_3$$

NA₃

NH₃

CA₃

CA₃

CA₃

CA₃

CA₄

CA₄

CA₄

CA₅

CA₆

CA₆

CA₆

CA₆

CA₆

CA₆

CA₆

CA₆

CA₇

CA

5. (10 pts) How would prepare 2-octanone from HCCH and any necessary reagents? How could you prepare 4-octanone?

$$H_{2}C = c - (cH_{2})_{S}CH_{3}$$

$$H_{2}SO_{A}$$

$$H_{2}SO_{A}$$

$$H_{2}SO_{A}$$

$$H_{3}SO_{4}$$

$$H_{3}SO_{4}$$

- 6. (20 pts) How would prepare each of the following compounds from propene and any necessary organic or inorganic reagents?
- a) allyl bromide

$$CH_3 - CH_2 = CH_2$$
 $NIBS$
 $CH_2 - CH = CH_2$
 R

b) allyl alcohol

d) 1-bromo-2-chloropropane

- (20 pts) Suggest reasonable explanations for each of the following.
- a) The first order rate constant for the solvolysis of $(CH_3)_2C=CHCH_2Cl$ in ethanol is 6000 times greater than that of allyl chloride.

b) After a solution of 3-buten-2-ol in aqueous sulfuric acid had been allowed to stand for a week, it was found to contain both 3-buten-2-ol and 2-buten-1-ol.

c) Treatment of CH₃CH=CHCH₂OH with HBr gave a mixture of 1-bromo-2-butene and 3-bromo-1-butene.

 Treatment of 3-buten-2-ol with HBr gave the same mixture of bromides as in part (c).

$$CH_{3}-CIH-CIH=CH_{2}$$

$$Olt$$

$$3-bnten-2-ol$$

$$CH_{3}-CH-CH-CH_{2}Br$$

$$CH_{3}-CH-CH=CH_{2}Br$$

$$CH_{3}-CH-CH=CH_{2}$$

$$CH_{3}-CH-CH=CH$$